Two New Endiandric Acid Analogs, a New Benzopyran, and a New Benzenoid from the Root of *Beilschmiedia erythrophloia*

by Ping-Shin Yang^a), Ming-Jen Cheng*^b), Jih-Jung Chen^c), and Ih-Sheng Chen*^a)

^a) Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan 807, R.O.C. (phone: +886-7-3121101 ext 2191; fax: +886-7-3210683; e-mail: m635013@kmu.edu.tw)

^b) Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu, Taiwan 300, R.O.C. (e-mail: cmj0404@gmail.com)

^c) Graduate Institute of Pharmaceutical Technology & Department of Pharmacy, Tajen University, Pingtung, Taiwan 907, R.O.C.

Phytochemical investigation of the root of *Beilschmiedia erythrophloia* led to the isolation and structural elucidation of two new endiandric acid analogs, endiandric acids I and J (1 and 2, resp.), a new benzopyran, dehydrooligandrol methyl ether (3), and a new benzenoid, farnesylol (4), together with six known compounds. Their structures were established on the basis of extensive 1D- and 2D-NMR analyses in combination with HR-MS experiments.

Introduction. – The genus *Beilschmiedia* (Lauraceae), comprising *ca*. 200 species, is widely distributed throughout tropics regions, with only 2 species occurring in Taiwan, *B. erythrophloia* HAY. and *B. tsangii* MERR. [1]. Endiandric acids [2], benzopyrans [2], arylpropanoids [2], aporphines [3], bisbenzylisoquinolines [4], and flavonoids [5] are widely distributed in plants of the genus *Beilschmiedia*. Several constituents have shown biological activities such as antibacterial [2] and antimalarial [4] activities. In our recent study, several cytotoxic and antitubercular compounds were isolated from the leaves [6] and the stems [7] from Formosan *B. tsangii*.

B. erythrophloia HAY. is an evergreen tree, distributed in Indochina, south China, Hainan Island, Ryukyus, and throughout Taiwan [1]. The chemical constituents and biological properties of this plant have never been investigated. Recently, over 1,000 species of Formosan plants have been screened for *in vitro* antimycobacterial activities, and *B. erythrophloia* has been found to be one of the active species. We describe herein the isolation and structural elucidation of two new endiandric acid analogs, endiandric acids I and J (1 and 2, resp.), a new benzopyran, dehydrooligandrol methyl ether (3), and a new benzenoid, farnesylol (4), together with six known compounds, from the AcOEt-soluble fraction of the root of *B. erythrophloia*. The structural elucidations of these new compounds were based on spectroscopic analyses.

Results and Discussion. – The AcOEt-soluble fraction of the MeOH extract was fractionated by a combination of SiO_2 and *RP-18* columns, as well as preparative HPLC to yield ten compounds, the structures of which were elucidated by 1D- and 2D-NMR spectra and comparison with literature data.

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Compound **1** was obtained as an optically inactive yellowish oil. $[a]_{D}^{25} = 0$ (c = 0.39, CHCl₃). The molecular formula was determined as $C_{24}H_{28}O_4$ on the basis of the $[M + Na]^+$ peak at m/z 403.1882 (calc. 403.1885 for $C_{24}H_{28}NaO_4^+$) in its HR-ESI-MS. The UV absorptions (λ_{max} 234 and 286 nm) confirmed the presence of a benzenoid nucleus [8]. The bands at 2600 – 3300, 1701, and 1039 and 938 cm⁻¹ in the IR spectrum revealed the presence of a OH group, C=O, and O-CH₂-O groups, respectively. Eleven indices of hydrogen deficiency (IHD) were determined from the molecular formula, ¹³C-NMR (*Table 1*), and DEPT spectra. Based on further spectral evidences, the structure of **1** was elucidated as (1*RS*,1a*SR*,3*RS*,3a*RS*,6*RS*,66*SR*,7*SR*)-1-[5-(1,3-benzodioxol-5-yl)pentyl]-1,1a,2,3,3a,6,6a,6b-octahydro-3,6-methanocyclobut[*cd*]indene-7-carboxylic acid, designated as endiandric acid I [9], which was further confirmed by ¹³C-NMR, COSY (*Fig. 1*), NOESY (*Fig. 1*), HSQC, and HMBC (*Fig. 1*) experiments and comparison with the spectroscopic data of endiandric acid C [2][10].

Fig. 1. Significant COSY (-), NOESY (\leftrightarrow), and HMBC (\rightarrow) correlations of 1^1)

1) Arbitrary numbering. For systematic name, see Exper. Part.

	1		2	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$
H-C(1)	41.8	2.66–2.71 (<i>m</i>)	41.8	2.69 (ddd, J = 7.2, 4.8, 2.0)
H-C(2)	40.1	2.35 (dt, J = 8.8, 5.6)	40.1	2.35 (dt, J = 8.4, 5.6)
H-C(3)	39.5	1.59 - 1.67 (m)	39.6	1.61 - 1.66 (m)
H-C(4)	39.4	1.59 - 1.67 (m)	39.4	1.61 - 1.66 (m)
H-C(5)	40.2	2.22 $(t, J = 6.4)$	40.2	2.23 (br. $t, J = 6.8$)
$H_a - C(6)$		1.51 - 1.53 (m)		1.54 (d, J = 12.6)
$H_{\beta}-C(6)$	38.5	1.96 (<i>ddd</i> , <i>J</i> =12.8, 7.6, 5.6)	38.5	1.90 (ddd, J = 12.6, 7.6, 5.6)
H-C(7)	38.3	2.50 - 2.56(m)	38.2	2.54(t, J = 5.2)
H-C(8)	48.9	2.86 (d, J = 3.6)	48.9	2.87 $(d, J = 4.0)$
H-C(9)	35.0	3.02 (br. <i>s</i>)	35.0	3.02 (dt, J = 7.2, 4.8)
H - C(10)	131.3	6.22 (ddd, J = 10.4, 8.0, 1.6)	131.3	6.23 (ddd, J = 10.0, 8.0, 2.0)
H - C(11)	131.9	6.23 (ddd, J = 10.4, 8.0, 1.6)	131.9	6.23 (ddd, J = 10.0, 8.0, 2.0)
$CH_{2}(1')$	36.2	1.42 - 1.50 (m)	36.3	1.43 - 1.50 (m)
$CH_{2}(2')$	27.1	1.21 - 1.30 (m)	27.3	1.26 (br. s)
CH ₂ (3')	29.1	1.21 - 1.30 (m)	29.4 - 29.7	1.26 (br. s)
$CH_{2}(4')$	31.7	1.54 - 1.58 (m)	29.4 - 29.7	1.26 (br. s)
CH ₂ (5')	35.6	2.52 $(t, J = 7.6)$	29.4 - 29.7	1.26 (br. s)
C(6') or CH ₂ (6')	136.7	_	29.4 - 29.7	1.26 (br. s)
$H-C(7')$ or $CH_2(7')$	108.8	6.67 (d, J = 1.6)	29.4 - 29.7	1.26 (br. <i>s</i>)
$C(8')$ or $CH_2(8')$	147.4	-	31.9	1.26 (br. s)
C(9') or CH ₂ (9')	145.4	-	22.7	1.26 (br. <i>s</i>)
H-C(10') or $Me(10')$	108.0	6.72 (d, J = 7.6)	14.1	0.88(t, J = 6.6)
H - C(11')	121.0	6.62 (dd, J = 7.6, 1.6)	-	_
OCH ₂ O	100.7	5.91 (s)	-	_
C=O	180.0	-	180.1	-

Table 1. ¹*H*- and ¹³*C*-*NMR* Data (CDCl₃, 400 and 100 MHz, resp.) of **1** and **2**¹). δ in ppm, J in Hz.

The ¹H-NMR spectrum of **1** (*Table 1*) showed signals of one methylenedioxyphenyl group at $\delta(H)$ 5.91 (s, OCH₂O), 6.67 (d, $J = 1.6, H - C(7')^1$), 6.72 (d, J = 7.6, H - C(10')), and 6.62 (dd, J = 7.6, 1.6, H - C(11')), two *cis*-form mutually-coupled vinyl H-atoms at δ (H) 6.22 (ddd, J = 10.4, 8.0, 1.6, H-C(10)) and 6.23 (ddd, J = 10.4, 8.0, 1.6, H-C(11)), and five CH₂ groups (δ (H) 1.42–1.50 (m, CH₂(1')), 1.21–1.30 (m, CH₂(2', 3')), 1.54– 1.58 (m, CH₂(4')), 2.52 (t, J = 7.6, CH₂(5'))). In the ¹³C-NMR spectrum, beside the signals corresponding to the above-mentioned H-atoms, there are still ten tertiary Catoms including the two vinyl C-atoms C(10) (δ (C) 131.3) and C(11) (δ (C) 131.9) composing the remaining structure of 1, which was very similar to that of endiandric acid C [2][10]. By the 1H,1H-COSY (Fig. 1) and HSQC data, a nine contiguous structural sequence was derived from correlations from H–C(1) (δ (H) 2.66–2.71; δ (C) 41.8) to H–C(11) (δ (H) 6.23; δ (C) 131.9), from H–C(11) to H–C(10) (δ (H) 6.22; $\delta(C)$ 131.3), from H-C(10) to H-C(9) ($\delta(H)$ 3.02; $\delta(C)$ 35.0), from H-C(9) to H-C(3) ($\delta(H)$ 1.59–1.67; $\delta(C)$ 39.5), from H-C(3) to H-C(2) ($\delta(H)$ 2.35; $\delta(C)$ 40.1), from H–C(2) to H–C(5) (δ (H) 2.22; δ (C) 40.2), from H–C(5) to and CH₂(6) $(\delta(H) 1.51 - 1.53, 1.96; \delta(C) 38.5))$, and from H-C(6) to H-C(7) $(\delta(H) 2.50 - 2.56;$ $\delta(C)$ 38.3)), in accord with the presence of a spin system corresponding to a $CH(1)-CH(11)-CH(10)-CH(9)-CH(3)-CH(2)-CH(5)-CH_2(6)-CH(7)$ moiety (*Fig.* 1).

The HMBC data (*Fig. 1*) made it possible to establish the full connectivity within the molecule. Correlations between the H-atom signal at $\delta(H) 2.50 - 2.56 (H - C(7)^1)$ and the C-atom signal at $\delta(C)$ 131.9 (C(11)) revealed that C(1) ($\delta(C)$ 41.8) connected with C(7) (δ (C) 38.3), and the correlations from H–C(7) to C(2) (δ (C) 40.1) and from H-C(1) (δ (H) 2.66–2.71) to C(5) (δ (C) 40.2) established a five-membered ring of C(1)-C(2)-C(5)-C(6)-C(7) and a six-membered ring of C(1)-C(2)-C(3)-C(3)C(9)-C(10)-C(11). The other six-membered ring was composed of C(1)-C(7)-C(8)-C(9)-C(10)-C(11), ascertained by the ¹H,¹³C-NMR long-range correlations between the H-atom signal at $\delta(H)$ 2.86 (H–C(8)) and the C-atom signals at $\delta(C)$ 41.8 (C(1)), and 131.3 (C(10)) in the HMBC spectrum. Finally, the correlations between the H-atom signal at $\delta(H)$ 1.59–1.67 (H–C(4)) and the C-atom signals at $\delta(C)$ 40.1 (C(2)), 38.5 (C(6)), and 35.0 (C(9)) confirmed the existence of a fourmembered ring (C(2)-C(3)-C(4)-C(5)). A C=O group in the molecule was indicated by the band at 1701 cm^{-1} in the IR spectrum and confirmed by the signal at δ (C) 180.0 in the ¹³C-NMR spectrum. HMBC Correlations between the C=O group $(\delta(C) 180.0)$ and both H-C(7) $(\delta(H) 2.50 - 2.56)$ and H-C(8) $(\delta(H) 2.86)$ established the position of the COOH group at C(8). Finally, the HMBC correlations of H-C(5)/C(1'), H-C(3)/C(1') and H-C(5')/C(7'/11') indicated that the endiandric acid main skeleton and the (methylenedioxy)phenyl moiety were linked by five methylenes $(CH_2(1'-5'))$ at C(4) and C(6'), respectively. Complete ¹H and ¹³C assignments (Table 1) were achieved through a combination of COSY, HSQC, HMBC, and NOESY experiments. The full assignments of the C-atom resonances based on HSQC and HMBC techniques were shown in Table 1.

The relative configuration of **1** was derived by a NOESY spectrum (*Fig. 1*) in combination with biogenetic considerations [11] and comparison with endiandric acid C [10], the relative configuration of which was based on an X-ray crystallographic analysis. According to the NOESY spectrum, the H-C(9) was α -oriented, which was confirmed by the NOE H-C(10)/H-C(9). NOEs for H-C(9)/H-C(4) and H-C(8)indicated that H-C(4) and H-C(8) were on the same side of the molecular plane, tentatively assumed as α -orientation. On the other hand, the NOE cross peaks H-C(3)/H-C(2), H-C(2)/H-C(1) and H-C(5), $H-C(5)/H-C(6\beta)$, and $H-C(6\beta)/H-C(7)$ demonstrated the *cis-β*-orientation of the H-atoms H-C(1), H-C(2), H-C(3), H-C(5), and H-C(7). Besides, no detectable NOESY effect could be observed between H-C(4) and H-C(5), and between H-C(7) and H-C(8), just as in endiandric acid C [11], and thus the α -orientation of H-C(4) and H-C(8) was confirmed. Thus, the relative configuration of H-C(1), H-C(2), H-C(3), H-C(4), H-C(5), H-C(7), H-C(8), and H-C(9) was assigned as (1RS,2RS,3RS,4SR,5SR,7SR,8RS,9SR)¹), as in endiandric acid C [10]. In view of the optical inactivity, **1** was concluded to be racemic, the same as endiandric acid C [10][11].

Compound **2** was obtained as colorless needles with $[\alpha]_{D}^{25} = 0$ (c = 0.44, CHCl₃). The HR-ESI-MS exhibited a *quasi*-molecular ion peak at m/z 353.2455 ($[M + Na]^+$) corresponding to the molecular formula of $C_{22}H_{34}O_2$ and indicating six degrees of unsaturation. The IR spectrum of **2** displayed absorbtions for a OH group (3300–

3500 cm⁻¹), and a C=O group (1701 cm⁻¹), and the ¹H-NMR (*Table 1*), ¹³C-NMR (*Table 1*), HMBC, COSY, and NOESY data confirmed the structure as (1RS,1aSR,3RS,3aRS,6RS,6aSR,6bSR,7SR)-1-decyl-1,1a,2,3a,3a,6,6a,6b-octahydro-3,6-methanocyclobut[cd]indene-7-carboxylic acid, named endiandric acid J.

The ¹H-NMR spectrum of **2** was similar to that of endiandric acid I (**1**), except that a decyl group (δ (H) 0.88 (t, J = 6.6, H-C(10'))¹), 1.26 (br. s, H-C(2'-9')), 1.43–1.50 (m, H-C(1'))) in **2** replaced the 5-(1,3-benzodioxol-5-yl)pentyl moiety in the C(4) position of **1**. Ten tertiary C-atoms including two *cis*-form vinyl C-atom signals at δ (C) 131.3 (C(10)), δ (C) 131.9 (C(11)) and a secondary C-atom (C(6)) composed the endiandric acid skeleton. The COOH group was also attached to C(8) (δ (C) 48.9), according to the HMBC ³J correlation between C=O and both H–C(7) (δ (H) 2.54) and H–C(9) (δ (H) 3.02). A decyl group was located at C(4), confirmed by the HMBC correlations from H–C(1') (δ (H) 1.43–1.50) to C(3) (δ (C) 39.6), H–C(5) (δ (H) 2.23) to C(1') (δ (C) 36.3), and H–C(4) (δ (H) 1.61–1.66) to C(2') (δ (C) 27.3). Because of the optical inactivity, **2** was also proposed to be racemic.

Compound **3** was isolated as colorless oil with $[\alpha]_D^{25} = -28.0$ (c = 0.72, CHCl₃). The HR-ESI-MS data determined the molecular formula to be $C_{23}H_{32}O_2$ (m/z 363.2303 ($[M + Na]^+$; calc. 363.2300)). The UV absorptions of **3** at 232 and 269 nm suggested the presence of a benzenoid nucleus [8]. The IR spectrum suggested the presence of an aromatic ring in the molecule at 1594 and 1468 cm⁻¹. The ¹H- and ¹³C-NMR (*Table 2*), HMBC (*Fig. 2*), COSY (*Fig. 2*), and NOESY (*Fig. 2*) spectra were compatible with the structure of **3** as (2*S*)-2-[(3*E*)-4,8-dimethylnona-3,7-dien-1-yl]-6-methoxy-2,8-dimethyl-2*H*-1-benzopyran, named dehydrooligandrol methyl ether.

Fig. 2. Significant COSY (-), NOESY (\leftrightarrow), and HMBC (\rightarrow) correlations of 3^1)

The ¹H- and ¹³C-NMR spectra (*Table 2*) of **3** were similar to those of oligandrol [2], also isolated in this study, except that a MeO group (δ (H) 3.73 (*s*, MeO – C(6))) and the C=C bond (δ (H) 5.58 (*d*, *J* = 9.6, H–C(3)¹)) and δ (H) 6.29 (*d*, *J* = 9.6, H–C(4))) of **3** replaced a OH group at C(6) and C(3)–C(4) (δ (H) 1.76 (*t*, *J* = 6.7, H–C(3)) and 2.73 (*t*, *J* = 6.7, H–C(4))) of oligandrol. Compound **3** showed laevorotatory optical activity with $[\alpha]_{25}^{25} = -28.0$ (*c* = 0.72, CHCl₃). With regard to the (*R*)-configuration of

	3		4		
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	
C(1)	-	-	146.7	_	
HO-C(1)	_	_	_	4.78 (s)	
C(2)	77.8	_	125.4	-	
Me(2)	25.9	1.36(s)	25.7	1.67(s)	
H-C(3)	130.6	5.58 (d, J = 9.6)	112.9	6.53 (d, J = 3.0)	
H-C(4) or $C(4)$	123.1	6.29 (d, J = 9.6)	153.0	-	
MeO-C(4)	_	_	55.6	3.74(s)	
H-C(5)	108.8	6.38 (d, J = 3.0)	114.0	6.57 (d, J = 3.0)	
C(6)	152.9	_	127.2	-	
MeO-C(6) or $Me(6)$	55.6	3.73 (s)	16.0	2.22(s)	
H-C(7)	116.0	6.55 (d, J = 3.0)	_	-	
C(8)	126.2	_	_	-	
Me(8)	15.6	2.16 (s)	_	-	
C(9)	145.0	_	-	-	
C(10)	121.1	_	-	-	
$CH_{2}(1')$	40.8	1.65 - 1.70 (m)	30.5	3.33 (d, J = 7.2)	
$CH_2(2')$ or $H-C(2')$	22.6	2.12 (td, J = 8.4, 2.0)	121.6	5.30 (br. $t, J = 7.2$)	
H-C(3') or $C(3')$	124.3	5.11(t, J = 6.6)	138.8	-	
Me(3')	-	_	16.2	1.79(s)	
$C(4')$ or $CH_2(4')$	135.2	_	39.7	1.96 - 2.17 (m)	
Me(4')	15.9	1.57(s)	-	-	
CH ₂ (5')	39.7	1.93 - 1.97 (m)	26.3	1.96 - 2.17 (m)	
$CH_2(6')$ or $H-C(6')$	26.7	2.01 - 2.05(m)	123.6	5.08 (br. $t, J = 7.2$)	
H–C(7′) or C(7′)	124.1	5.08(t, J = 6.6)	135.6	-	
Me(7')	-	_	16.2	1.59(s)	
C(8') or CH ₂ (8')	131.3	_	39.7	1.96 - 2.17 (m)	
$Me(9')$ or $CH_2(9')$	25.7	1.67(s)	26.7	1.96 - 2.17 (m)	
Me(10') or $H-C(10')$	17.7	1.58(s)	124.3	5.08 (br. $t, J = 7.2$)	
C(11')	_	_	131.3	-	
Me(12')	_	_	25.7	1.67(s)	
Me(13')	-	-	17.7	1.59(s)	

Table 2. ¹*H*- and ¹³*C*-*NMR Data* (CDCl₃, 400 and 100 MHz, resp.) of **3** and **4**¹). δ in ppm, *J* in Hz.

(+)-plastochromanol-8 [12] ($[\alpha]_{D}^{25} = -14.0$, CHCl₃), the absolute configuration at C(2) could be tentatively proposed as (*S*).

Compound **4** was obtained as colorless oil. The HR-ESI-MS data indicated the molecular formula to be $C_{23}H_{34}O_2$, based on the $[M + Na]^+$ ion signal at m/z 365.2459 (calc. 365.2456). The UV absorptions of **4** at 232, 270, and 294 nm suggested the presence of a benzenoid nucleus [8]. The IR spectrum showed absorption bands for a OH group at 3476 cm⁻¹, and an aromatic ring at 1601 and 1479 cm⁻¹. The ¹H- and ¹³C-NMR (*Table 2*), COSY (*Fig. 3*), NOESY (*Fig. 3*), HSQC, and HMBC (*Fig. 3*) experiments confirmed the structure as 4-methoxy-2-methyl-6-[(2*E*,6*E*)-3,7,11-trime-thyldodeca-2,6,10-trien-1-yl]phenol, and designated farnesylol. Compound **4** was first isolated from a natural source, though it has ever been synthesized [13].

The ¹H-NMR data (*Table 2*) of **4** revealed two aromatic H-atoms in *meta* position at $\delta(H)$ 6.53 ($d, J = 3.0, H - C(3)^1$) and $\delta(H)$ 6.57 (d, J = 3.0, H - C(5)) corroborated

Fig. 3. Significant COSY (-), NOESY (\leftrightarrow), and HMBC (\rightarrow) correlations of 4¹)

by ¹³C-NMR signals at $\delta(C)$ 112.9 (C(3)) and 114.0 (C(5)) (*Table 2*). A OH group $(\delta(H) 4.78 (s))$, a Me group $(\delta(H) 2.22 (s))$, and a MeO group $(\delta(H) 3.74 (s))$ located at the aromatic ring were determined by ¹³C-NMR signals at C(1) (δ (C) 146.7), C(4) $(\delta(C) 153.0)$, and C(6) $(\delta(C) 127.2)$, and the HMBC correlations of MeO-C(4)/C(4), Me-C(6)/C(6), C(5) and C(1), and HO-C(1)/C(2) and C(6). The ¹³C-NMR spectrum indicated that there were 15 C-atoms in the terpenyl side-chain, which was elucidated as a 2-(3,7,11-trimethyldodeca-2,6,10-trienyl) group from the presence of five CH₂ Hatoms at $\delta(H)$ 3.33 (d, J = 7.2, $CH_2(1')$), 1.96–2.17 (m, $CH_2(4')$, $CH_2(5')$, $CH_2(8')$, $CH_2(9')$), three vinylic H-atoms at $\delta(H)$ 5.30 (br. t, J = 7.2, H-C(2')), 5.08 (br. t, J =7.2, H-C(6'), H-C(10')), and four allylic Me H-atoms at $\delta(H)$ 1.59 (s, Me(7')), 1.59 (s, Me(13'), 1.67 (s, Me(12')), 1.79 (s, Me(3')). The location of the terpenyl substituent at C(2) was confirmed by the correlation between H-C(1') and H-C(3)/HO-C(1) in the NOESY spectrum (Fig. 3). The full assignment of this terpenyl side chain was further confirmed by COSY (Fig. 3), HSQC, and HMBC (Fig. 3) spectra. The correlations of H-C(3)/MeO-C(4), MeO-C(4)/H-C(5), and Me-C(6)/H-C(5) were also observed in the NOESY experiment (Fig. 3) and further supported the positions of the substituents of the aromatic moiety.

The known isolates, *i.e.*, oligandrol [2], oligandrol methyl ether [2], caryophyllene oxide [14], β -sitostenone [15], and a mixture of β -sitosterol [15] and stigmasterol [15], were readily identified by comparison with literature data.

Until now, endiandric acid analogs were only found in four species of *Beilschmiedia* [2] and one species of *Endiandra* genus [16]. Interestingly, we have not detected endiandric acids in the leaves [6] and stems [7] of *B. tsangii*, the second species of the

genus *Beilschmiedia* growing in Taiwan in previous investigations. For the sake of better understanding the distribution of endiandric acid analogs, the roots of *B. tsangii* are worth examining for the presence of these secondary metabolites.

This work was kindly supported by the *National Science Council of the Republic of China* (NSC 95-2320-B-037-001).

Experimental Part

General. TLC: silica gel 60 F_{254} precoated plates (Merck). Column chromatography (CC): silica gel 60 (SiO₂; 70–230 or 230–400 mesh, Merck) or Spherical C18 (20–40 µm) (Silicycle). HPLC: Spherical C18 column (250 × 10 mm, 5 µm; Waters); LDC-Analytical-III apparatus; UV-VIS detector (SPD-10A, Shimadzu); MeCN/H₂O 10:1 as mobile phase, flow rate 1.0 ml/min. M.p.: Yanaco micro-melting point apparatus; uncorrected. Optical rotation: Jasco DIP-370 polarimeter; in CHCl₃. UV Spectra: Jasco UV-240 spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Perkin-Elmer-2000 FT-IR spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H-, ¹³C-, and 2D-NMR Spectra: Varian-Gemini-200, Varian-Unity-Plus-400 and Varian-Mercury-400 spectrometers; δ in ppm rel. to Me₄Si, J in Hz. GC-MS: Trace GC/POLARIS Q Thermo Finnigan; in m/z (rel. %). EI-MS: VG-Biotech Quatro-5022 mass spectrometer; in m/z (rel. %). ESI- and HR-ESI-MS: Bruker APEX-II mass spectrometer; in m/z.

Plant Material. The roots of *B. erythrophloia* were collected from Mudan, Pingtung County, Taiwan, in February 2005 and identified by *I.-S. C.*, College of Pharmacy, Kaohsiung Medical University. A voucher specimen (Chen 1187) has been deposited with the Herbarium of the Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.

Extraction and Isolation. Air-dried root of *B. erythrophloia* (7.5 kg) were sliced and extracted with cold MeOH (3×30 l, 3 d each) at r.t. The extract was concentrated under reduced pressure and was partitioned with AcOEt/H₂O (1:1, ν/ν) to afford an AcOEt-soluble fraction (160 g), a H₂O-soluble fraction (100 g) and an insoluble fraction (43 g).

The AcOEt fraction (100 g) was subjected to CC (2 kg SiO₂, 230-400 mesh; hexane/AcOEt gradient) to give 13 fractions: Fr. 1-Fr. 13. Fr. 5 (2.66 g) was subjected to CC (40 g, SiO₂, 230-400 mesh; hexane/AcOEt gradient) to obtain 11 subfractions: Fr. 5.1-Fr. 5.11. Fr. 5.7 (41 mg) was subjected to RP-C18 CC (10 g), eluting with Me₂CO and H₂O (20:1) to obtain 15 subfractions: Fr. 5.7.1-Fr. 5.7.15. Fr. 5.7.14 (10 mg, Me₂CO/H₂O 20:1) was subjected to RP-HPLC (MeCN/H₂O 10:1) to afford 6 (5.0 mg, r.t. 15.2 min). Fr. 6 (1.0 g) was purified by RP-C18 CC (20 g), eluting with Me₂CO and H₂O (3:1), to obtain 4 fractions: Fr. 6.1-Fr. 6.4. Fr. 6.1 (40.0 mg) was subjected to RP-C18 CC (10 g), eluting with MeCN and H₂O (20:1), to obtain 7 (6.0 mg) and 8 (5.0 mg). Fr. 6.3 (40.0 mg) was subjected to CC (10 g, SiO₂, 230-400 mesh; hexane/AcOEt 40:1) to afford 3 (3.0 mg) and 4 (2.5 mg). Fr. 6.4 (22.0 mg) was subjected to CC (10 g, SiO₂, 230-400 mesh; hexane/AcOEt 40:1) to afford 5 (3.6 mg). Fr. 10 (20 g) was subjected to CC (400 g, SiO₂, 230-400 mesh; hexane/Me₂CO gradient) to obtain 7 fractions: Fr. 10.1-Fr. 10.7. Fr. 10.3 (2.0 g) was subjected to CC (50 g, SiO₂, 230-400 mesh; CH₂Cl₂ gradient) to obtain 5 fractions: Fr. 10.3.1 - Fr. 10.3.5. Fr. 10.3.2 (20.0 mg) was subjected to CC (400 mg, SiO₂, 230-400 mesh; hexane/Me₂CO 4:1) to afford 1 (2.6 mg). Fr. 10.3.4 (70 mg) was subjected to CC (1.5 g, SiO₂, 230-400 mesh; hexane/Me₂CO 5:1) to afford a mixture of 9 and 10 (50.0 mg). Fr. 10.6 (3.5 g) was subjected to RP-C18 CC (10.0 g), eluting with Me₂CO and H₂O (20:1) to obtain 2 (1.7 mg).

Endiandric Acid I (=(1RS,1aSR,3RS,3aRS,6RS,6aSR,6bSR,7SR)-1-[5-(1,3-Benzodioxol-5-yl)pentyl]-1,1a,2,3,3a,6,6a,6b-octahydro-3,6-methanocyclobut[cd]indene-7-carboxylic Acid; **1**). Yellowish oil. $[\alpha]_D^{25} = 0$ (c = 0.39, CHCl₃). UV (MeOH): 234 (4.05), 286 (3.95). IR (neat): 2600–3300 (COOH), 1701 (C=O), 1039, 938 (OCH₂O). ¹H- and ¹³C-NMR: see *Table 1*. ESI-MS: 381 ($[M + H]^+$). HR-ESI-MS: 403.1882 ($[M + Na]^+$, C₂₄H₂₈NaO₄⁺; calc. 403.1885).

Endiandric Acid J (=(1RS,1aSR,3RS,3aRS,6RS,6aSR,6bSR,7SR)-1-Decyl-1,1a,2,3,3a,6,6a,6b-octahydro-3,6-methanocyclobut[cd]indene-7-carboxylic Acid; **2**). Colourless needles. M.p. 130–135°. $[a]_{D}^{25} = 0$ (c = 0.44, CHCl₃). IR (neat): 3300–3500 (COOH), 1701 (C=O). ¹H- and ¹³C-NMR: see Table 1. ESI-MS: 353 ($[M + Na]^+$). HR-ESI-MS: 353.2455 ($[M + Na]^+$, C₂₂H₃₄NaO₂⁺; calc. 353.2456). Dehydrooligandrol Methyl Ether (=(2S)-2-[(3E)-4,8-Dimethylnona-3,7-dien-1-yl]-6-methoxy-2,8-dimethyl-2H-1-benzopyran; **3**). Colorless oil. [a]_D²⁵ = $-28.0 (c = 0.72, CHCl_3)$. UV (MeOH): 232 (3.88), 269 (3.29). IR (neat): 1594, 1468 (C=C). ¹H- and ¹³C-NMR: see *Table 2*. ESI-MS: 363 ([M + Na]⁺). HR-ESI-MS: 363.2303 ([M + Na]⁺, $C_{23}H_{32}NaO_2^+$; calc. 363.2300).

Farnesylol (=4-Methoxy-2-methyl-6-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]phenol; **4**). Yellowish oil. UV (MeOH): 232 (3.95), 270 (3.34), 294 (3.25). IR (neat): 3476 (OH), 1601, 1479 (C=C). ¹H- and ¹³C-NMR: see *Table 2*. ESI-MS: 365 ($[M + Na]^+$). HR-ESI-MS: 365.2459 ($[M + Na]^+$, C₂₃H₃₄NaO⁺₂; calc. 365.2456).

REFERENCES

- J. C. Liao, 'Lauraceae', in 'Flora of Taiwan', 2nd edn., Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, 1996, Vol. II, pp. 433-499.
- [2] J. E. Banfield, D. S. Black, D. J. Collins, B. M. P. Hyland, J. J. Lee, S. R. Pranowo, Aust. J. Chem. 1994, 47, 587.
- [3] P. S. Clezy, A. W. Nichol, E. Gellert, *Experientia* 1963, 19, 1.
- [4] I. Kitagawa, K. Minagawa, R.-S. Zhang, K. Hori, M. Doi, M. Inoue, T. Ishida, M. Kimura, T. Uji, H. Shibuya, *Chem. Pharm. Bull.* 1993, 41, 997.
- [5] J. B. Harborne, J. Méndez, Phytochemistry 1969, 8, 763.
- [6] J. J. Chen, E. T. Chou, C. Y. Duh, S. Z. Yang, I. S. Chen, Planta Med. 2006, 72, 351.
- [7] J. J. Chen, E. T. Chou, C. F. Peng, I. S. Chen, S. Z. Yang, H. Y. Huang, Planta Med. 2007, 73, 567.
- [8] A. I. Scott, 'Interpretation of the Ultraviolet Spectra of Natural Product', Pergamon Press, New York, USA, 1964, p. 93.
- [9] K. C. Nicolaou, Kagaku Zokan 1983, 99, 1.
- [10] W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, Aust. J. Chem. 1982, 35, 567.
- [11] J. E. Banfield, D. S. C. Black, S. R. Johns, R. I. Willing, Aust. J. Chem. 1982, 35, 2247.
- [12] H. Mayer, J. Metzger, O. Isler, Helv. Chim. Acta 1967, 50, 1376.
- [13] A. G. Gonzalez, J. D. Martin, M. L. Rodriguez, An. Quim. 1976, 72, 1004.
- [14] T. T. Jong, M. Y. Jean, J. Chin. Chem. Soc. 1993, 40, 399.
- [15] C. K. Lee, M. H. Chang, J. Chin. Chem. Soc. 2000, 47, 555.
- [16] W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, D. M. Gatehouse, Aust. J. Chem. 1981, 34, 1655.

Received May 3, 2008